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Abstract. We present a theoretical model of the “isostructural” γ–α phase transition in Ce which is based
on quadrupolar interactions due to coupled charge density fluctuations of 4f electrons and of conduction
electrons. The latter are treated in tight-binding approximation. The γ–α transition is described as an
orientational ordering of quadrupolar electronic densities in a Pa3̄ structure. The quadrupolar order of
the conduction electron densities is complementary to the quadrupolar order of 4f electron densities. The
inclusion of conduction electrons leads to an increase of the lattice contraction at the γ–α transition in
comparison to the sole effect of 4f electrons. We calculate the Bragg scattering law and suggest synchrotron
radiation experiments in order to check the Pa3̄ structure.

PACS. 71.10.-w Theories and models of many electron systems – 71.27.+a Strongly correlated electron
systems; heavy fermions – 71.45.-d Collective effects

1 Introduction

The understanding of the nature of the α phase and the
apparently isostructural transition between the cubic γ-
and α-phases in cerium is a long-standing problem [1,2].
Numerous experimental data present an outstanding chal-
lenge for the explanation by theoretical models [3–11]. The
most important question to be answered by theory is to
find the driving force of the “isostructural” γ–α transition
and to explain also the existence of the other non-cubic
phases of Ce.

The theory should also describe the change of mag-
netic properties of Ce at the γ–α transition [1,12] which
are reminiscent of an insulator-metal transition of 4f elec-
trons [3]. Recently the Mott transition has been reconsid-
ered by several authors using electronic band structure
calculations with thermodynamic extensions [4–6] (see for
a review Ref. [7]). There, the α phase is described as a
regular band state formed by 6s, 5d and 4f electronic
states while in γ-Ce different degrees of localization of 4f
states are suggested and investigated. Two face centered
cubic (fcc) phases of cerium are attributed to two local
minima of free energy which develop for the same crystal
structure (Fm3̄m).

Assuming the localized nature of the 4f electrons
throughout the γ–α phase transition, one can understand
the magnetic properties on the basis of two principles.
These are the singlet ground state of one 4f electron
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and the energy gap (characterized by the Kondo tem-
perature TK) separating the ground state from a man-
ifold of excited magnetic states. So far these properties
have been treated [10,11] on the basis of the Anderson
impurity Hamiltonian [13] which implies an antiferromag-
netic Kondo spin interaction. In order to describe the vol-
ume contraction [1] at the γ–α transition, the theoreti-
cal models [8,9,7] exploit the volume dependence of the
Kondo temperature. Such a “volume collapse” leads to a
phase instability without symmetry change and is inter-
preted as an isostructural transition. However within the
Kondo theory scenario, the existence of the other, non-
cubic phases of Ce, remains unexplained. In the last few
years the validity of this approach has been questioned
by photoemission spectroscopy experiments [14–18] where
the predicted temperature dependence of the intensity of
the Kondo resonance at the Fermi level has not been ob-
served. Recently it has appeared that the Kondo volume
collapse model can not be applied to YbInCu4 [19] which
exhibits a 0.5% volume expansion during another isostruc-
tural phase transition [20] though Yb in this compound is
the f -hole analogue of Ce. In addition, taking into account
the thermal expansion of YbInCu4 above the phase transi-
tion temperature T = 42 K one concludes that the Kondo
temperature is not a unique function of cell volume [19].

An alternative theoretical model of the γ–α transition
has been recently proposed by the present authors [21].
The theory is capable of accounting for transitions to
phases of non-cubic symmetry. The quantum mechani-
cal electric quadrupole interaction between 4f electrons
on the fcc lattice is proposed as the driving mecha-
nism of a phase transition. The γ-phase is characterized
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by the absence of spatial orientational order of the
quadrupolar densities, the space group is Fm3̄m. In the α-
phase the quadrupolar densities order in a Pa3̄ structure.
Notice that this change from Fm3̄m to Pa3̄ conserves the
fcc structure of the atomic center of mass points and is
solely due to orientational order of the quadrupoles. This
phase transition is accompanied by a contraction of the fcc
lattice, however the theoretical estimation of these effects
in [21] (in the following we will denote this reference by I),
is about an order of magnitude smaller than the experi-
mental result [1]. In addition the treatment of I does not
indicate the existence of a critical end point of the phase
separation line (γ−α) in the P−T (pressure-temperature)
phase diagram.

In the present paper, we will extend the theoretical
model of I by taking into account the polarization of
(6s5d)3 conduction band electrons. The polarization can
be considered as a screening process of the quadrupolar
density orientations of the 4f electrons and results in turn
in a complementary ordered Pa3̄ structure build up from
conduction electron quadrupolar densities. The conduc-
tion electrons will be described within the formalism of
tight binding approximation.

The paper comprises the following sections. We
start (Sect. 2) with reconsidering 4f electrons and extend-
ing the treatment of I by taking into account the radial
dependence of the 4f electron density. Next in Section 3
we describe the conduction electrons in second quantiza-
tion with basis functions in tight-binding approximation.
We derive the multipolar interactions among conduction
electrons as well as interactions with 4f electrons. In con-
sidering conduction electrons we have to distinguish be-
tween on-site and inter-site interactions. Section 4 is de-
voted to a study of the crystal field which acts on the
individual 4f electron. It is found that the refinement by
the radial density dependence of 4f electrons does not im-
prove but rather spoils the agreement between experiment
and theory. On the other hand the inclusion of conduction
electrons improves in turn the situation. In Section 5 we
study the quadrupolar ordering of the coupled system of
4f electrons and conduction electrons. We conclude that
a state of lower free energy (in comparison with the disor-
dered state) can be achieved by a complementary ordering
of 4f electron and conduction electron quadrupolar den-
sities. On a same atomic lattice site, high charge density
regions of the 4f electron correspond to low charge den-
sity of the conduction electrons and vice versa. Finally
we present numerical estimates that the inclusion of the
conduction electron quadrupolar order improves the mag-
nitude of the lattice contraction at the Fm3̄m→ Pa3̄ tran-
sition. In order to propose an unambiguous experimental
proof of the present theoretical model, we calculate the
Bragg scattering law (Sect. 6) and suggest synchrotron
radiation experiments for the Pa3̄ structure. In Section 7
(Discussion and conclusions) we recall the salient features
of the present theory and situate it with respect to the
conventional approaches that are based on the Kondo the-
ory concepts. While we do not adopt the Kondo volume
collapse models, we discuss the relevance of the Friedel-

Anderson hybridization mechanism for the explanation of
the magnetic anomalies in Ce and suggest a link with our
theory of the electronic charge degrees of freedom driven
structural phase transition.

2 Radial dependence of 4f electrons

In our previous paper [21] the quadrupolar coupling be-
tween 4f electrons has been calculated by assuming that
the electron on each lattice site n is localized on a sphere
with a fixed radius rf = 1.378 a.u. Here we want to ex-
tend the previous calculation by taking into account the
radial dependence of the 4f electron wave functions. Such
an extension is necessary if we want to study the inter-
action with the conduction electrons (see next sections).
Furthermore it is useful in assessing the validity of our
previous calculations.

We consider a face centered cubic crystal of N Ce
atoms. Each atomic core possesses one 4f electron. In the
γ-phase the 4f electron densities are orientationally dis-
ordered. The space group of the crystal is Fm3̄m. The
Coulomb interaction between two 4f electrons (charge
|e| = 1) at positions R(n) and R′(n′) near the lattice
sites n and n′ reads

V (R(n),R′(n′)) =
1

|R(n)−R′(n′)| · (2.1)

The position vector R(n) is given by

R(n) = X(n) + r(n). (2.2)

Here X(n) is the lattice vector which specifies the cen-
ters of the atoms on a rigid fcc lattice, while r(n) is the
radius vector of the 4f electron; in spherical coordinates
r(n) = (r(n), Ω(n)), where Ω = (Θ,φ). We perform a
multipole expansion of V by using site symmetry adapted
functions (SAF’s) [25] which transform as irreducible rep-
resentations of the cubic site point group Oh:

V (R(n),R′(n′)) =
∑
ΛΛ′

vΛΛ′(n,n′; r, r′)SΛ(n)SΛ′(n′),

(2.3a)

where

vΛΛ′(n,n′; r, r′) =
∫

dΩ(n)
∫

dΩ(n′)
SΛ(n̂)SΛ′(n̂′)
|R(n)−R′(n′)| ·

(2.3b)

The SAF’s SΛ(n̂), n̂ ≡ Ω(n) are linear combinations
of spherical harmonics Y ml [25]. The index Λ stands for
(l, τ), with τ = (Γ, µ, k). Here l accounts for the angu-
lar dependence of the multipolar expansion, Γ denotes
an irreducible representation (in the present case of the
group Oh), µ labels the representations that occur more
than once and k denotes the rows of a given representa-
tion. Expansion (2.3b) still depends on the instantaneous
radii r(n) and r′(n′). In reference I we have written the
Coulomb interaction in the space of orientational state
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Fig. 1. Calculated radial density distribution for 4f , 5d and
6s electrons of an isolated Ce atom. Valence density is super-
position of (6s)2 and 5d; rc is the close contact radius of γ-Ce.

vectors |i〉, i = 1–14, of the crystal field. The wave func-
tions 〈n̂|i〉 were taken as linear combinations of spin or-
bitals Ym3 (Ω)us(sz) m = −3, ...,+3, where us is the spin
function, with s = ± for the spin projections sz = ±1/2 on
the z-axis respectively. (The consideration of spin orbitals
is necessary since we calculate the eigenvalues εi of the cu-
bic crystal field in presence of spin-orbit coupling.) Since
at present we take into account the radial dependence of
the orbitals, we consider basis functions

〈n, r|i〉 = Rf(r(n))〈n̂|i〉, (2.4)

where we have assumed that the function Rf(r) is the
same for all i. The real radial function Rf(r) is obtained
from a DFT (density functional theory) calculation of an
atom of Ce within LDA (local density approximation) for
J = 5/2 states. In Figure 1 we plot the radial density for
the outer electrons. For a non-relativistic hydrogen-like
atom Rf(r) would correspond to the Laguerre function
Rn=4 l=3(r).

The matrix elements of the interaction (2.3a) are ob-
tained as

〈i|n〈i′|n′V (R(n),R′(n′))|j〉n|j′〉n′ =∑
ΛΛ′

vFFΛΛ′(n− n′) cFΛ(ij) cFΛ′(i
′j′), (2.5)

where

vFFΛΛ′(n− n′) =
∫

dr r2

∫
dr′ r′2

×R2
f (r)R2

f (r′) vΛΛ′(n,n′; r, r′) (2.6)

accounts for the average radial dependence and where

cFΛ(ij) =
∫

dΩ 〈i|n̂〉SΛ(n̂)〈n̂|j〉. (2.7)

We use the superscript F in order to indicate that we have
transitions between two 4f states, i.e. F ≡ (f, f). By sum-
ming V (R(n),R′(n′)) over all pairs of lattice sites n, n′,
the total Coulomb interaction operator is then obtained as

Uff =
1
2

∑
nn′

′∑
ΛΛ′

ρFΛ(n) vFFΛΛ′(n− n′) ρFΛ′(n
′), (2.8)

where

ρFΛ(n) =
∑
ij

cFΛ(ij)|i〉n〈j|n. (2.9)

Introducing Fourier transforms

ρFΛ(q) =
1√
N

∑
n

eiq·X(n)ρFΛ(n), (2.10a)

vFFΛΛ′(q) =
∑
h 6=0

′
eiq·X(h)vFFΛΛ′(h), (2.10b)

where q is the wave vector, we get

Uff =
1
2

∑
q

∑
ΛΛ′

ρFΛ(q)†vFFΛΛ′(q) ρFΛ′(q). (2.11)

The multipolar interaction (2.8) or equivalently (2.11) can
be separated into two parts. We recall that Λ ≡ (l, τ).

Firstly we consider the case where l 6= 0 and l′ 6= 0.
In I it has been shown that some of the coefficients
cFΛ(ij) ≡ cτl (ij) for l = 2 and τ = (T2g, µ = 1, k = 1− 3)
are different from zero. (We recall that i and j refer to
quantum states of the 4f electron.) Therefrom we have
inferred the existence of quadrupolar (l = 2) density fluc-
tuations caused by transitions among 4f electron states.
In labeling the quadrupolar T2g functions, we recall that
the functions Sk2 ≡ S(l=2,T2g ,k) are proportional to the
Cartesian components yz, zx and xy for k = 1, 2 and 3
respectively. In the basis of real spherical harmonics Y 0

l ,
Ym,cl and Y m,sl of reference [25] (see also Eqs. (2.1a–2.1c)
of I), these functions correspond to Y 1,s

2 , Y 1,c
2 and Y 2,s

2 .
Writing only the index k for Λ = (l = 2, k), we denote the
quadrupolar density operator by

ρFk (n) =
∑
ij

cFk (ij)|i〉n〈j|n. (2.12)

The interaction between quadrupolar 4f electron densities
becomes

UffQQ =
1
2

∑
q

∑
kk′

ρFk (q)†vFFkk′ (q) ρFk′(q). (2.13)

The explicit form of vFFkk′ (q) is discussed in Appendix A.
Secondly we have the case where l 6= 0 and l′ = 0

or vice versa. This means that we consider a multipole l
on a given lattice site while the surrounding multipoles
on neighboring fcc lattice sites are taken in spherical ap-
proximation. This interaction contributes to the crystal
field. The crystal field has unit cubic symmetry, the low-
est nonzero value of l is 4 and τ = (A1g , 1), where A1g
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is the unit representation of the cubic site group Oh. The
crystal field contribution from 4f electrons at site n is
then given by

V fCF(n) =
12√
4π

∑
l

vFl,A1g
F
0,A1g

ρFl,A1g
(n). (2.14)

Here we have restricted ourselves to the 12 nearest neigh-
bors on the fcc lattice, and l = 4, 6, ...

The leading contributions to Uff are then given by

Uff = UffQQ + UffCF, (2.15)

where UffCF =
∑

n V
f

CF(n). In the following of this section
we will discuss the physical consequences of the term UffQQ,
expression (2.13), also called orientational pair quadrupo-
lar interaction. We will give a discussion of the crystal field
in Section 4.

Previously (I) it has been found that the quadrupole-
quadrupole interaction matrix vFF (q) becomes diagonal
and has a twofold degenerate negative eigenvalue called
λX+

5
at the X point of Brillouin zone (BZ) of the fcc lattice

(see also Appendix A). This attractive interaction induces
an orientational ordering of the quadrupolar densities in a
Pa3̄ structure. A condensation scheme for the phase tran-
sition Fm3̄m→ Pa3̄ reads:

ρ̄F3 (qX
x ) = ρ̄F1 (qX

y ) = ρ̄F2 (qX
z ) = ρ̄F

√
N 6= 0, (2.16a)

ρ̄F2 (qX
x ) = ρ̄F3 (qX

y ) = ρ̄F1 (qX
z ) = 0. (2.16b)

Here the bar stands for a thermal expectation value, while
ρ̄F is the order parameter amplitude. The above conden-
sation scheme corresponds to one of eight possible do-
mains of Pa3̄. The wave vectors qX

x , qX
y and qX

z stand for
(2π/a)(1, 0, 0), (2π/a)(0, 1, 0) and (2π/a)(0, 0, 1) respec-
tively, where a is the cubic lattice constant. For each arm
of the star of ∗qX = {qX

x ,q
X
y ,q

X
z } there are two basis func-

tions ρ̄Fk . Hence the functions ρFk (qX) of the condensation
scheme (2.16a, b) form a basis of the six-dimensional irre-
ducible representation X+

5 of the space group Fm3̄m. In
real space the ordering implies four sublattices of simple
cubic structure as shown in Figure 3 of reference I.

In I, where we have taken a fixed radius rf for the
4f radial distribution, we found the eigenvalue λX+

5
=

−3491 K (Kelvin) and a phase transition temperature
T1 = 85.6 K. At present we have calculated the eigen-
value λX+

5
= −4γFF (see Appendix A) with the ra-

dial dependence Rf(r) in equation (2.6) taken from an
atomic DFT calculation with LDA. Although the atomic
4f electron density is small beyond the close contact ra-
dius rc = a/(2

√
2) = 3.448 a.u., the opposite holds for

the inter-site interaction potential vΛΛ′(n,n′; r, r′) and
its first derivative (see below), which increase substan-
tially when r → rc and r′ → rc (see Fig. 2). We have
investigated several models for the radial integral (2.6).
In model 1 we consider the radial integration in the range
0 < r < rc, that is without any overlap of the atomic
4f electronic densities of neighboring atoms, and we ob-
tain λX+

5
= −2121 K, next (model 2) we have allowed for
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Fig. 2. Radial dependence of quadrupole-quadrupole inter-
actions vΛΛ′(n,n

′; r, r′), where r = r′, and Λ = Λ′ = (l =
2, T2g , k); n = n′ (intra-, k = 1, 2, 3) and n 6= n′ (inter- on fcc
lattice) with n = (0, 0, 0), n′ = (a/2)(0, 1, 1), k = 1.

an overlap between neighboring sites and extended the
integration over the range 0 ≤ r ≤ ∞. We then obtain
λX+

5
= −2478 K. Finally (model 3) we assume again the

integration range 0 ≤ r ≤ rc but renormalize the 4f elec-
tronic density to unity. The result for λX+

5
is −2682 K.

Comparing these values with λX+
5

= −3491 K obtained
for the calculation with the characteristic radius rf , we
conclude that a refinement of the theory in smearing out
the radial extension of the 4f electron distribution does
not increase the strength of the quadrupole-quadrupole
interaction and consequently does not increase the transi-
tion temperature.

So far we have considered multipolar interactions on
a rigid lattice. In order to account for the lattice contrac-
tion at the γ–α phase transition, we have to include lat-
tice displacements. In I we have shown that the inter-site
quadrupolar interaction is modified by lattice displace-
ments uν(n). The correction to the potential reads

UQQT =
1
2

∑
nn′

′∑
ν

∑
kk′

v′ν kk′(n− n′; r, r′)

× Sk2 (n̂)Sk
′

2 (n̂′) [uν(n)− uν(n′)] . (2.17)

Here Sk2 are SAF’s with l = 2, T2g, k = 1–3. The cou-
pling coefficients v′ν kk′ are given by the derivative of the
quadrupole-quadrupole interaction with respect to lattice
displacements:

v′ν kk′(n− n′; r, r′) =
∫

dΩ(n)
∫

dΩ(n′)Sk2 (n̂)Sk
′

2 (n̂′)

× ∂

∂Xν(n)
1

|R(n)−R′(n′)| · (2.18)

Previously (I) this expression was considered for 4f elec-
trons on a shell with the (fixed) characteristic radius
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r = r′ = rf . Defining

V ′ν(R(n),R′(n′)) =
∑
kk′

v′ν kk′(n− n′; r, r′)Sk2 (n̂)Sk
′

2 (n̂′)

(2.19)

we now consider matrix elements with basis functions (2.4)
and obtain

〈i|n〈i′|n′V ′ν(R(n),R′(n′))|j〉n|j′〉n′ =∑
kk′

v′ν
FF
kk′ (n− n′) cFk (ij) cFk′(i

′j′), (2.20)

where

v′ν
FF
kk′ (n− n′) =

∫
dr r2

∫
dr′ r′2R2

f (r)R2
f (r′)

× v′ν kk′(n− n′; r, r′). (2.21)

The correction to the quadrupolar interaction between 4f
electrons then becomes

UffQQT =
1
2

∑
nn′

′
ρFk (n) v′ν

FF
kk′ (n− n′) ρFk′(n

′)

× [uν(n)− uν(n′)] , (2.22)

with summation over repeated indices k, k′, ν. We intro-
duce the Fourier expansion

uν(n) = (Nm)−1/2
∑
q

uν(q) eiq·X(n), (2.23)

where m is the Ce mass. Using definition (2.10a), we
rewrite expression (2.22) in Fourier space. In the long
wavelength limit q → 0 and taking p close to the star
of pX, we obtain

UffQQT = i
∑
pq

∑
ν(k)

′
v′ν
FF
kk (q,p) ρFk (p)† ρFk (p)uν(q). (2.24)

Here the sum
∑′ refers to ν = x, y for k = 3, to ν = z, x

for k = 2 and to ν = z, y for k = 1. The coupling matrix
is obtained as

v′ν
FF
33 (q,p) = (Nm)−1/2ΛFF qν a cos

(pxa
2

)
cos
(pya

2

)
,

(2.25)

with ΛFF = v′ν
FF
33 (n− n′), where ν = x or y and X(n)−

X(n′) = (a/2)(1, 1, 0) on the fcc lattice (for more details,
see Ref. I). The other elements of v′ν

FF
kk (q,p) follow by

symmetry considerations and permutation of indices.
We consider expression (2.24) in the Pa3̄ ordered phase

by using the condensation scheme (2.16a). The lattice dis-
placements are taken in the long wavelength limit where
they are related to the homogeneous strains. Symmetry
implies that only longitudinal strains occur:

lim
q→0

iqν ūν(q) =
√
mNενν , ν = x, y, z. (2.26)

Then UQQT becomes

1
N
UffQQT = −2aΛFF (ρ̄F )2

∑
ν

ενν , (2.27)

which corresponds to a coupling of ordered quadrupoles
(quadratic) to longitudinal strains. Notice that the sign
of ΛFF is negative, this is a consequence of the repulsive
nature of quadrupole-quadrupole interaction. The strains
give rise to an elastic energy of the cubic lattice:

1
N
UTT =

a3

4
[
c011(ε2xx + ε2yy + ε2zz)

+2c012(εxxεyy + εyyεzz + εzzεxx)
]
. (2.28)

Here c011 and c012 are the bare elastic constants. The inter-
play of quadrupolar order and lattice displacements fol-
lows from the interaction Hamiltonian

U = UTT + UffQQ + UffQQT. (2.29)

Minimizing U [ρ̄F , ενν ] with respect to the strains for a
given Pa3̄ ordered structure, we obtain ενν ,

εxx = εyy = εzz = −8a−2 |ΛFF |κL (ρ̄F )2, (2.30)

while the change of the lattice constant is given by ∆a =
εxxa. Here κL = (c011 + 2c012)−1 is the linear compressibil-
ity. Hence the present theory leads unambiguously to a
lattice contraction. In order to provide a numerical esti-
mate of the lattice contraction, one has to calculate ΛFF ,
to estimate κL from experimental results and to calculate
by the methods of statistical mechanics the discontinu-
ity of the order parameter at the γ–α phase transition.
In I (fixed radius rf) we did obtain ΛFF = −445 K/a.u.
(−841 K/Å) [22]. Now, for the models 1), 2), and 3) of
the spatial radial integrals we obtain ΛFF=−498, −581
and −659 K/Å respectively. We conclude that the present
refinement in calculating ΛFF is not helpful in view of
obtaining a larger value of ΛFF and hence of the lattice
contraction ∆a. Since our theoretical value of ∆a is more
than one order of magnitude too small to account for the
∼ 15% volume contraction of cerium, we conclude that a
significant process has so far been omitted in our treat-
ment. In the following section we will study the effect of
conduction electrons on quadrupolar interactions.

3 Tight-binding and multipolar interactions

Here we will investigate about the existence of multipo-
lar interactions between the localized 4f electrons and the
(6s5d)3 conduction electrons Ufc as well as multipolar in-
teractions among conduction electrons U cc. Although the
derivation of multipolar expansions for these interactions
is analogous, in particular as far as symmetry is concerned,
to the procedure of Section 2, there is an essential differ-
ence. Since the conduction electrons are not localized, they
give rise to quadrupolar pair interactions on a same site
(intra) and to interactions between different sites (inter).
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Interactions involving conduction electrons will be de-
scribed within the formalism of second quantization. We
introduce field operators

Ψ(R) =
∑
kα

akα〈R|kα〉, (3.1a)

Ψ†(R) =
∑
kα

a†kα〈kα|R〉. (3.1b)

The operators Ψ and Ψ† satisfy the usual anticommutation
relations for fermion fields, while a†kα and akα are creation
and annihilation operators for one electron in state (k, α).
The electronic wave functions 〈R|kα〉 are taken in tight-
binding approximation and are specified in Appendix B.

The Coulomb interaction between localized 4f elec-
trons at sites {n} and the conduction electrons is given by

Ufc =
∑
n

∑
ij

|i〉n〈j|n

×
∫

dR′ Ψ†(R′)〈i|nV (R(n),R′)|j〉nΨ(R′). (3.2)

We observe that
∫

dR′ →
∑

n′
∫

dr ′, where the integral
extends over the volume of the cell n′. In expression (3.2)
we perform a multipole expansion of V similar to equa-
tions (2.3a, b) and then calculate matrix elements

〈i|n〈k, α|V (R(n),R′(n′))|j〉n|p, β〉 =
ei(p−k)·X(n′)

N

×
∑
ΛΛ′

∑
l1l2

vFΛ
l1l2
Λ′ (n− n′) cFΛ(ij) cΛ′l1l2(k, α; p, β). (3.3)

Here we define

vFΛ
l1l2
Λ′ (n− n′) =

∫
dr r2

∫
dr′ r′2R2

f (r)

× vΛΛ′(n,n′; r, r′)Rl1(r′)Rl2(r′),

(3.4a)

cΛ′ l1l2(k, α; p, β) =
∑
m1m2

γ∗l1m1
(k, α) γl2m2(p, β)

× cΛ′(l1m1, l2m2), (3.4b)

and

cΛ′(l1m1, l2m2) =
∫
Ym1 ∗
l1

(Ω)SΛ′(Ω)Y m2
l2

(Ω) dΩ.

(3.4c)

In the following we will introduce a single index L for
(l1, l2), writing vF LΛΛ′ for vFΛ

l1l2
Λ′ , cΛ′ L for cΛ′ l1l2 etc. We

notice that the index l1(l2) takes the values 0 and 2 cor-
responding to s and d electrons. We recall that cFΛ(ij),
referring to the 4f electron transitions, is given by ex-
pression (2.7). The radial functions Rl and quantities
γlm(k, α) refer to tight-binding wave functions. They are
defined in Appendix B.

Since the conduction electrons are delocalized, we will
have to distinguish between interactions where n 6= n′
(inter-site), and where n = n′ (on-site). In the first case
vΛΛ′(n,n′; r, r′) is given by an expression of type (2.3b),
in the second case we have

vΛΛ′(n = n′; r, r′) =
∫

dΩ
∫

dΩ′
1

|r− r ′|SΛ(Ω)SΛ′(Ω′)

=

(
rl<

r
(l+1)
>

)
4π

2l + 1
δΛΛ′ , (3.5)

which is independent of the site, as is also the case for
vFΛ

L
Λ′(n = n′). Here r> = max(r, r′), r< = min(r, r′) and

δΛΛ′ = δττ ′δll′ . The inter-site coupling vFΛ
L
Λ′(n − n′) still

depends on the distance |X(n) −X(n′)|, as follows from
the translational invariance of the lattice.

In addition to the multipole density of 4f electrons
ρFΛ(q), equation (2.10a), we define the multipole density
of conduction electrons

ρLΛ(n)a =
1√
N

∑
q

ρLΛ(q) e−iq·X(n), (3.6a)

ρLΛ(q) =
1√
N

∑
αβ

∑
k

a†kαak−qβ cΛL(k, α; k− q, β).

(3.6b)

The interaction for the inter-site contribution of Ufc is
then given by

Ufc
∣∣
inter

=
∑
q

ρFΛ(q)† vFΛ
L
Λ′(q) ρLΛ′(q), (3.7a)

with

vFΛ
L
Λ′(q) =

∑
h 6=0

′
eiq·X(h) vFΛ

L
Λ′(h). (3.7b)

The on-site part of Ufc is obtained as

Ufc
∣∣
intra

= CFΛ
L
Λ

∑
q

ρFΛ(q)† ρLΛ(q), (3.8a)

where

CFΛ
L
Λ = vFΛ

L
Λ(n = n′). (3.8b)

Here we have also used the orthogonality relation (3.5).
In expressions (3.7a, 3.8a), summation is understood over
indices Λ, Λ′, L (l1, l2).

In a similar way we treat the multipolar interactions
between conduction electrons. We now start from the ex-
pression in operator representation

U cc =
1
2

∫
dR′

∫
dRΨ†(R′)Ψ†(R)V (R,R′)Ψ(R)Ψ(R′).

(3.9)
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We have to consider matrix elements

〈k, α|〈k′, α′|V (R,R′)|p, β〉|p′, β′〉 =∑
nn′

∑
ΛΛ′

∑
L

∑
L′

vLΛ
L′

Λ′(n− n′) cΛL(k, α; p, β)

× cΛ′L′(k′, α′; p′, β′)
ei(p−k)X(n)

N

ei(p′−k′)X(n′)

N
, (3.10)

where

vLΛ
L′

Λ′(n− n′) =
∫

dr r2

∫
dr′ r′2Rl1(r)Rl2(r)

× vΛΛ′(n,n′; r, r′)Rl′1(r′)Rl′2(r′).

(3.11)

Again we distinguish inter-site and intra-site interactions.
We obtain for the inter-site contribution

U cc|inter =
1

2N

∑
kk′ q

a†kαa
†
k′α′ak′−qβak+qβ′

× vLΛ L
′

Λ′(q) cΛL(k, α; k + q, β)

× cΛ′ L′(k′, α′; k′ − q, β′), (3.12a)

with

vLΛ
L′

Λ′(q) =
∑
h 6=0

′
eiq·X(h) vLΛ

L′

Λ′(h). (3.12b)

In equation (3.12a) summation is understood over the in-
dices α..., L(l1, l2)..., Λ... Expression (3.12a) can be rewrit-
ten as

U cc|inter =
1
2

∑
q

vLΛ
L′

Λ′(q) η
(
ρLΛ(q)†ρL

′

Λ′(q)
)
, (3.13)

where ρLΛ(q) is given by equation (3.6b) and where η is the
normally ordered product operator such that all the a† are
placed to the left and all a to the right in the product.

The on-site contribution is given by

U cc|intra =
1
2
CLΛ

L′

Λ

∑
q

η
(
ρLΛ(q)†ρL

′

Λ (q)
)
, (3.14a)

with

CLΛ
L′

Λ = vLΛ
L′

Λ (n = n′). (3.14b)

So far the present formalism is general as far as multipoles
are concerned. In the following of this section we will study
the interaction between quadrupoles (l = 2, l′ = 2). In
Section 4 we will study the crystal field (l = 4, l′ = 0).

We consider the three quadrupolar components of T2g

symmetry and write the index k for Λ = (l = 2, k), with
k = 1−3. The quadrupolar density of conduction electrons
becomes

ρLk (q) =
1√
N

∑
αβ

∑
p

a†pαap−qβ ck L(p, α; p− q, β).

(3.15)

We observe that ck L(p, α; p − q, β) comprises the factor
ck(l1m1, l2m2) which is defined (compare with expressions
(3.4b, 3.4c)) by

ck(l1m1, l2m2) =
∫
Ym1 ∗
l1

(Ω)Sk2 (Ω)Y m2
l2

(Ω) dΩ.

(3.16)

The quadrupolar contributions from the interaction po-
tentials (3.7a, 3.8a) between 4f electrons and conduction
electrons then read

UfcQQ

∣∣∣
inter

=
∑
q

ρFk (q)† vFk
L
k′(q) ρLk′(q), (3.17a)

and

UfcQQ

∣∣∣
intra

= CFk
L
k

∑
q

ρFk (q)† ρLk (q). (3.17b)

The contribution of the quadrupolar pair interaction po-
tential to expression (3.2) is then given by

UfcQQ = UfcQQ

∣∣∣
inter

+ UfcQQ

∣∣∣
intra

. (3.18)

The quadrupolar interactions between conduction elec-
trons follow from equations (3.13, 3.14a):

U ccQQ

∣∣
inter

=
1
2

∑
q

vLk
L′

k′ (q) η
(
ρLk (q)†ρL

′

k′ (q)
)
, (3.19a)

U ccQQ

∣∣
intra

=
1
2
CLk

L′

k

∑
q

η
(
ρLk (q)†ρL

′

k (q)
)
. (3.19b)

The contribution to expression (3.9) is given by

U ccQQ = U ccQQ

∣∣
inter

+ U ccQQ

∣∣
intra

. (3.20)

In order to select the contribution from conduction elec-
trons, we have studied the coefficients ck(l1m1, l2m2). We
find it convenient to use as basis functions for the con-
duction electron states the real spherical harmonics (see
Sect. 2). Then the s electron state is |l = 0,m = 0〉
while the five d electron states are |2,m = 0〉; |2, (m, s)〉,
|2, (m, c)〉, m = 1, 2. There are no transitions between 6s
states, the transitions between 6s and 5d states are

〈0, 0|S1
2 |2, (1, s)〉 = 〈0, 0|S2

2 |2, (1, c)〉

= 〈0, 0|S3
2 |2, (2, s)〉 =

1√
4π

(3.21)

and zero otherwise. The transition elements between 5d
states are quoted in Table 1.

Since the coefficients ck(l1m1, l2m2) always occur in
conjunction with interaction matrix elements vl1l2k

l′1l
′
2

k′

(vLk
L′

k′ ), we can immediately select the relevant matrix
elements. We observe that the indices l1 and l2 in the
interaction matrix elements then directly refer to s or d
electrons and we will adopt the notation vsdk

dd
k′ , v

ff
k

sd
k′ etc.
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Table 1. Calculated coefficients ck(l1m1, l2m2), k = 1− 3,
l1 = l2 = 2; mi (i = 1, 2) stands for the indices (mi, c) or
(mi, s) of real spherical harmonics [25]. Those functions which
are not quoted here give zero contributions.

(m) (m′) τ = (T2g, 1) (T2g, 2) (T2g , 3)

(0, c) (1, c) 0 0.09011 0

(0, c) (1, s) 0.09011 0 0

(0, c) (2, s) 0 0 −0.18022

(1, c) (1, s) 0 0 0.15608

(1, c) (2, c) 0 0.15608 0

(1, c) (2, s) 0.15608 0 0

(1, s) (2, c) −0.15608 0 0

(1, s) (2, s) 0 0.15608 0

Table 2. Interaction parameters CAB , λAB and ΛAB calcu-
lated with s-, d-, f-atomic radial distributions and lattice con-
stant a=9.753 a.u. (γ-Ce); A = (l1l2), B = (l′1l

′
2), F = (ff).

l1l2 l′1l
′
2 C (in K) λ (in K) Λ (in K/Å)

ff ff - −2 121 −498

sd ff ±4 408 −3 924 −950

dd ff 75 389 −6 025 −1 459

dd dd 94 559 −17 695 −4 283

ds ds 21 297 −7 547 −1 822

ds dd ±34 858 −11 545 −2 792

The indices f , s and d of these interaction matrix ele-
ments refer only to the radial dependence, they are irrel-
evant for symmetry considerations. The structure of the
intersite quadrupole-quadrupole interaction matrices are
investigated in Appendix A. From equation (3.5) it fol-
lows that the on-site elements CFk

L
k′ are diagonal in k, k′

and equal for k = 1, 2, 3; the same holds for CLk
L′

k′ . In
the following we omit the indices k, k′ and write Cff sd,
Csd sd etc. Numerical values are given in Table 2. By in-
troducing quadrupolar pair interactions on a same site
we generalize the concept of spherically symmetric on-site
electron-electron repulsions which is a characteristic prop-
erty of strongly correlated electron systems.

In order to treat the effect of conduction electrons on
the lattice contraction, we have studied the coupling of
quadrupole-quadrupole interactions with lattice displace-
ments within the tight-binding approach. We start from
expression UQQT, equation (2.17), and remind that uν(n)
and uν(n′) refer to lattice displacements at different sites.
We first consider matrix elements of V ′ν , expression (2.19),
between 4f electron and conduction electron states. We
proceed in analogy with equations (3.2–3.7b) but retain
only inter-site contributions. We then find (compare with
Eq. (5.13) of I) in the long wavelength limit q → 0, and

p close to the star of pX:

UfcQQT = 2i
∑
pq

∑
ν(k)

′
v′ν
F
k
L
k (q,p) ρFk (−p) ρLk (p)uν(q).

(3.22)

Here the sum
∑′ refers to ν = x, y for k = 3; to ν = z, x

for k = 2 and to ν = z, y for k = 1. The coupling matrix
is obtained as

v′ν
F
3
L
3 (q,p) =

1√
Nm

ΛF Lqν a cos
(pxa

2

)
cos
(pya

2

)
,

(3.23)

with ΛF L given by v′ν
F
k
L
k (n−n′), where ν = x or y, k = 3

and X(n)−X(n′) = (a/2)(1, 1, 0) on the fcc lattice. Here
we have defined

v′ν
F
k
L
k′(n− n′) =

∫
dr r2

∫
dr′ r′2R2

f (r)

× v′ν kk′(n− n′; r, r′)Rl1(r′)Rl2(r′),

(3.24)

with v′ν kk′(n− n′; r, r′) given by equation (2.18).
The matrix elements of V ′ν between conduction

electron states are treated in analogy with equations
(3.9–3.13). Now only inter-site terms occur. In the limit
q→ 0 and p close to the star of pX we find

U ccQQT = i
∑
pq

∑
ν(k)

′
v′ν
L
k
L′

k (p,q) η
(
ρLk (−p) ρL

′

k (p)
)
uν(q).

(3.25)

Here again we have the same relation between the indices
ν and k as was the case for equation (3.22). The coupling
matrix reads

v′ν
L
3
L′

3 (q,p) =
1√
Nm

ΛLL
′
qν a cos

(pxa
2

)
cos
(pya

2

)
,

(3.26)

with ΛLL
′

given by v′ν
L
k
L′

k (n − n′), with ν = x or y, for
k = 3. We finally quote the definition

v′ν
L
k
L′

k′ (n− n′) =
∫

dr r2

∫
dr′ r′2Rl1(r)Rl2(r)

× v′ν kk′(n− n′; r, r′)Rl′1(r′)Rl′2(r′),

(3.27)

where we use expression (2.18). Numerical values of ΛLL
′

are given in Table 2.
Taking into account the contributions due to conduc-

tion electrons, we see that the interaction Hamiltonian
(2.29) has to be replaced by

U = UTT + UQQ + UQQT, (3.28)

where

UQQ = UffQQ + UfcQQ + U ccQQ, (3.29a)

UQQT = UffQQT + UfcQQT + U ccQQT, (3.29b)
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Before studying the quadrupolar ordering and the ac-
companying lattice contraction (Sect. 5) during the γ → α
phase transition, we will next investigate the crystal field
of γ-Ce in the presence of conduction electrons.

4 Crystal field of γ-Ce

In the disordered γ phase there are only charge den-
sity fluctuations of quadrupolar type and the quadrupolar
Hamiltonian (3.28) (or (2.29)) averages to zero. The first
nontrivial orientational interaction then corresponds to a
crystal field Hamiltonian. In reference I we have defined
the crystal field of γ-Ce as the potential experienced by a
single 4f electron at a site n when spherically symmetric
contributions (l′ = 0) from nuclei, core electronic shells,
conduction electrons, 4f electrons at the twelve neighbor-
ing sites n′ on the fcc lattice and similar terms from the
homogeneous electronic density in the interstitial regions
are taken into account. In I we have shown that crys-
tal field effects are reduced to a single particle term to
which we have added a spin-orbit coupling for the 4f elec-
tron. We first generalize the results of I by taking into
account the radial dependence of the 4f electron density.
We start from equation (2.8) with Λ = (l = 4, A1g) ≡ Λ1

and Λ′ = (l = 0, A1g) ≡ 0. Since we are dealing with
a Coulomb potential and a spherically symmetric charge
distribution, the coupling function vΛ1 0(n,n′; r, r′), equa-
tion (2.3b), does not depend on r′ and we observe that
equation (2.6) can be written as

vFΛ1
F
0 (n− n′) = vFΛ1

•
0 ·Qf , (4.1a)

where

vFΛ1
•
0 =

∫
dr r2R2

f (r) vΛ1 0(n,n′; r, r′) (4.1b)

is the same for all 12 neighbors. We obtain vFΛ1
•
0 < 0. The

charge in units e of the 4f electron at a neighboring site
is given by

Qf =
∫

dr′ r′2R2
f (r′). (4.1c)

In our model Qf = 1. However, if we distinguish two
regions in the crystal, the first inside muffin-tin (MT)
spheres and the second in the interstices, then in the MT-
region Qf < 1. The other contributions to the crystal field
are dealt with similarly. Since the interaction parameter
vFΛ1
•
0 remains the same it is only the charges Qi (i stands

for core, nucleus, conduction electrons and interstitial con-
tributions) which we shall take care of. Collecting the con-
tributions from the various charges Qi together with Qf ,
we obtain for the crystal field at site n

V fCF(n) = Bf ρFΛ1
(n), (4.2a)

where Λ1 ≡ (l = 4, A1g),

Bf =
12√
4π

Qeff e v
F
Λ1
•
0 (4.2b)

and

ρFΛ1
(n) =

∑
ij

cFΛ1
|i〉n〈j|n. (4.2c)

Here e refers to the electron charge at site n (e = −1)
and Qeff to the effective charge of the surrounding neigh-
borhood. From electrostatic considerations we find (see
Appendix A of I) that Qeff = (1 + xint)QMT, where QMT

is the total charge inside a MT-sphere (which is always
positive) and where the factor xint ≈ 2.853 accounts for
the charge contributions from interstices for touching MT-
spheres. The coefficients cFΛ1

, equation (4.2c), are quoted
in Appendix A of I, they are diagonal in the basis (A.9–
A.11) of I. The expressions (4.2a–4.2c) represent a refine-
ment of the crystal field calculations, equations (A.3–A.6)
of I, where now a radial distribution of the 4f electron is
taken into account.

In I we have calculated the crystal field coefficient Bf
(we used the notation Λ for Bf ) for a fixed radius rf . The
obtained value Bf=346 K corresponds to rf = 1.156 a.u.
and not to rf = 1.378 a.u. as was quoted erroneously in
I. With a radial distribution as specified in models 1), 2),
and 3) of Section 2, we obtain Bf = 970, 1403 and 1104 K,
respectively. This implies that the strength of the crys-
talline electric field of the 4f electron should be 2.8-4 times
larger than calculated in reference I and therefore by the
same factor (2.8-4) larger than the crystal field measured
experimentally [23,24]. However, expression (4.2a) is im-
plicitly based on the approximation that the distribution
of conduction electrons at site n is spherically symmetric
and hence the on-site interaction from l = 4 multipoles is
ignored. In the following we will show that the effective
crystal field decreases if we take into account the average
on-site cubic distribution (l = 4) of conduction electrons.

From equations (3.8a, b) for the on-site interactions we
observe that the 4f electronic density ρFΛ1

couples with the
conduction electron density of the same symmetry (Γ =
A1g, l = 4). In real space equation (3.8a) with Λ = Λ′ =
(l = 4, A1g) ≡ Λ1 reads

Ufc
∣∣
intra

= CFΛ1
L
Λ1

∑
n

ρFΛ1
(n)† ρLΛ1

(n). (4.3)

We obtain the crystal field potential due to ρLΛ1
(n), equa-

tion (3.6a), by replacing this quantity by its thermal
average:

〈ρl1l2Λ1
〉 =

1
N

∑
k,α

nαk cΛ1 d d(k, α; k, α) δl12 δl22. (4.4)

Here nαk δq,0 δαβ = 〈a†kαak−qβ〉 is the Fermi distribution
and l1 = 2, l2 = 2 takes into account the fact that only
d electrons contribute to the matrix element cΛ1 l1l2 . We
then write 〈ρcΛ1

〉 = 〈ρd dΛ1
〉. The corresponding crystal field

at site n reads

V fcCF(n) = Bfc ρFΛ1
(n), (4.5a)

where

Bfc = CFΛ1
dd
Λ1
〈ρcΛ1
〉, (4.5b)
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with CFΛ1
dd
Λ1
> 0. Collecting the contributions (4.2a, 4.5a)

we obtain the effective single particle potential acting on
the 4f electron at site n:

Ṽ fCF(n) =
[
Bf +Bfc

]
ρFΛ1

(n). (4.6)

We recall that Bf > 0. The sign of Bfc depends on 〈ρcΛ1
〉.

We next investigate other interactions that affect 〈ρcΛ1
〉.

We consider the crystal field acting on ρcΛ1
(n). By

studying the inter-site interactions we find that the matrix
elements vΛΛ′(n,n′; r, r′), equation (2.3b), are negligibly
small for l = l′ = 4. On the other hand terms with l = 4,
l′ = 0 are significant and we retain the interactions which
involve

vddΛ1
•
0 =

∫
dr r2R2

d(r) vΛ1 0(n,n′; r, r′), (4.7)

where vddΛ1
•
0 < 0 (compare with Eq. (4.1b)). Here again

vddΛ1
•
0 is independent of r′. Proceeding in analogy with the

calculation of V fCF, we calculate the field due to the sur-
rounding 4f electrons, core electrons, nuclei, conduction
electrons and interstitial contributions at site n, thereby
obtaining

V cCF(n) = Bc ρcΛ1
(n), (4.8a)

where ρcΛ1
(n) = ρddΛ1

(n) and

Bc =
12√
4π
Qeff e v

dd
Λ1
•
0, (4.8b)

with Bc = 6093 K > 0. The positive sign of the field
Bc implies that 〈ρcΛ1

〉, calculated with the crystal field
V cCF(n), is negative. Hence Bfc, equation (4.5b), is neg-
ative, which leads to a reduction of the effective crystal
field of a 4f electron in equation (4.6).

The previous considerations indicate that the inclusion
of conduction electrons leads to a reduction of the crystal
field experienced by a 4f electron. However, a more rigor-
ous approach should start with the crystal field Hamilto-
nian of γ-Ce,

U0 = U c0 + UCF + Uso. (4.9)

Here U c0 is the “bare” electronic term (B.6), which includes
the kinetic (hopping) energy and the spherically symmet-
ric part of the electronic potential of conduction electrons,
Uso =

∑
n Vso(n) stands for the spin-orbit couplings of lo-

calized 4f electrons (see Appendix A of I for details). UCF

is the crystal field comprising 4f electrons and conduction
electrons:

UCF =
∑
n

VCF(n), (4.10a)

VCF(n) = V fCF(n) + V fcCF(n) + V cCF(n) + V ccCF(n).
(4.10b)

Here

V ccCF(n) = Cd dΛ1
d d
Λ1
ρd dΛ1

(n)† ρd dΛ1
(n) (4.11)

is the on-site l = 4, l′ = 4 interaction between conduc-
tion electrons. In a mean-field approximation UCF leads to
self-consistent crystal field potentials Ṽ cCF(n) and Ṽ fCF(n)
for conduction and 4f electrons, respectively. A quantita-
tive calculation of these effects is beyond the scope of the
present work.

5 Quadrupolar ordering

In Section 3 we have found that the system of localized
4f electrons and of conduction electrons are coupled by
means of the intra-site and inter-site quadrupolar poten-
tials (3.17b, 3.17a). Such a bilinear coupling suggests that
an ordering of 4f electron density quadrupoles should
imply an ordering of conduction electron quadrupoles
and vice versa. In Appendix A we have investigated the
wave vector dependence of the quadrupole-quadrupole
interaction matrices and the condition for quadrupolar
order. The present section is divided into two parts.
In Section 5.1 we study the interplay of quadrupolar
ordering of 4f electrons and conduction electrons on a
rigid cubic lattice; in Section 5.2, where we consider a
deformable lattice, we show that quadrupolar ordering
implies a lattice contraction.

5.1.We are investigating the possibility of a condensation
of quadrupolar densities in a Pa3̄ structure. At the X-point
of the BZ, the matrices of inter-site interactions (vFk

L
k′(q))

and (vLk
L′

k′ (q)) become diagonal in k, k′ and have two de-
generate negative eigenvalues. We then are led in analogy
with the condensation scheme (2.16a, b) for 4f electrons
to suggest the condensation scheme Fm3̄m→ Pa3̄ for the
quadrupole densities of conduction electrons:

ρ̄L3 (qX
x ) = ρ̄L1 (qX

y ) = ρ̄L2 (qX
z ) = ρ̄L

√
N 6= 0; (5.1a)

ρ̄L2 (qX
x ) = ρ̄L3 (qX

y ) = ρ̄L1 (qX
z ) = 0, (5.1b)

where L = (sd), (ds), (dd).
We disentangle the various contributions to UQQ,

equation (3.29a), in the ordered α phase where we as-
sume a simultaneous condensation of quadrupolar densi-
ties of 4f electrons and conduction electrons. Taking into
account the condensation scheme (2.16a, b), we obtain
from equation (2.13)

1
N
UffQQ =

3
2
λFF

(
ρ̄F
)2
, (5.2)

where λFF stands for λX+
5

, the twofold degenerate nega-
tive eigenvalue of vFF (qX) (see Appendix A). Similarly,
using in addition the condensation scheme (5.1a, b), we
obtain from equation (3.17b)

1
N

UfcQQ

∣∣∣
intra

= 3
[
2CF dsρ̄F ρ̄ds + CF ddρ̄F ρ̄dd

]
, (5.3a)

and from equation (3.17a)

1
N

UfcQQ

∣∣∣
inter

= 3
[
2λF dsρ̄F ρ̄ds + λF ddρ̄F ρ̄dd

]
, (5.3b)
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where λF ds and λF dd are the twofold degenerate nega-
tive eigenvalues of the matrices vF ds(qX) and vF dd(qX),
respectively (see Appendix A). Finally expressions
(3.19b, 3.19a) lead to

1
N

U ccQQ

∣∣
intra

=
3
2
[
4Csd sd(ρ̄sd)2 + 4Csd ddρ̄sdρ̄dd

+Cdddd(ρ̄dd)2
]
, (5.4a)

and

1
N

U ccQQ

∣∣
inter

=
3
2
[
4λsd sd(ρ̄sd)2 + 4λsd ddρ̄sdρ̄dd

+λdddd(ρ̄dd)2
]
. (5.4b)

We observe that all coefficients CLL
′

are positive while
λLL

′
are negative (see Tab. 2). Obviously the inter-site in-

teraction (5.4b) favors quadrupolar order while the intra-
site coupling (5.4a) disfavors quadrupolar order of con-
duction electrons.

The leading quadrupolar interaction in the ordered α
phase,

UQQ = UffQQ + UfcQQ

∣∣∣
intra

+ UfcQQ

∣∣∣
inter

+ U ccQQ

∣∣
intra

+ U ccQQ

∣∣
inter

, (5.5)

is a quadratic form in ρ̄F , ρ̄sd and ρ̄dd, in particular the
terms (5.3a, 5.3b) represent a bilinear coupling between
the localized 4f quadrupolar density ρ̄F and the conduc-
tion electron quadrupolar densities ρ̄dd and ρ̄sd. Since in
tight-binding the (6s5d)3 electrons are hybridized, we in-
troduce the total conduction electron density

ρ̄c = ρ̄dd + 2ρ̄sd. (5.6)

Defining average interaction coefficients

Cfc =
1
2

(CF ds + CF dd), (5.7a)

λfc =
1
2

(λF ds + λF dd), (5.7b)

Ccc =
1
3

(Cds ds + Cdd dd + Cds dd), (5.7c)

λcc =
1
3

(λds ds + λdd dd + λds dd), (5.7d)

we approximate UQQ by an effective interaction

1
N
UQQ ≈

3
2
[
λFF (ρ̄F )2 + 2Afcρ̄F ρ̄c +Acc(ρ̄c)2

]
, (5.8)

where

Afc = Cfc + λfc (5.9a)

and

Acc = Ccc + λcc. (5.9b)

Fig. 3. Pa3̄ structure of the ordered α phase with 4 sublattices
(n1 − n4). Grey quadrupoles correspond to inner 4f electron
densities, white quadrupoles – to outer conduction electron
densities with the opposite sign as shown in Figure 4.

Fig. 4. Quadrupolar density distribution of the 4f electron
(inside sphere of r = 1.3 a.u.) and of one conduction electron
(spherical radius r = 3.4 a.u.), on scale.

We observe that Afc > 0, Acc > 0. For a fixed value of
ρ̄F , we minimize UQQ with respect to ρ̄c and obtain

ρ̄c = −A
fc

Acc
ρ̄F . (5.10)

We see that quadrupolar order ρ̄F of 4f electrons pro-
duces (as a type of mirror image) a quadrupolar order
of conduction electrons ρ̄c of opposite sign. Herewith we
associate the pictorial representation of Figures 3 and 4.
Regions of an excess density (+) of the 4f electron dis-
tribution overlap with a depletion (−) in density of the
conduction electrons and vice versa (Fig. 4). Substituting
the right hand side of equation (5.10) into (5.8) we get

1
N
UQQ = −3

2

[
|λFF |+ (Afc)2

Acc

]
(ρ̄F )2 (5.11)

where we use the fact that λFF < 0. The bilinear cou-
pling between quadrupolar densities of 4f electrons and
conduction electrons leads to an increase of the attractive
interaction between 4f quadrupolar densities.

Starting from the interaction (5.8) we construct a
Landau free energy in the condensed phase. We take
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ρ̄1 ≡ ρ̄F and ρ̄2 ≡ ρ̄c as components of a two-dimensional
vector ρ̄ = (ρ̄1, ρ̄2) and define the matrix

J =

[
−|λFF | Afc
Afc Acc

]
. (5.12)

Inspired from the theory of orientational order in molec-
ular crystals we write

F
N

=
F0

N
+

3
2

∑
ij

ρ̄i χ
−1
ij ρ̄j + F (3) + F (4). (5.13)

Here F0 is the free energy in the disordered phase:

F0 = −T ln Tr[e−U0/T ], (5.14)

where U0 is the crystal field, equation (4.9). The quantity

χ−1 =
[
T 〈ρ ρ〉−1

0 + J
]

(5.15)

is the inverse susceptibility matrix, T is the temperature
and

〈ρ ρ〉0 =

[
〈(ρFk (n))2〉0 0

0 〈(ρck(n))2〉0

]
. (5.16)

Here 〈...〉0 are single particle thermal expectation values
that have to be calculated by means of U0, equation (4.9).
Cubic symmetry implies that the three quadrupolar com-
ponents are equal and for expectation values of conduction
electrons we obtain:

〈ρLk (n)ρL
′

k′ (n)〉0 =
1
N2

∑
αβ

∑
p h

(1− npβ)nhα

× |ck L(h, α; p, β)|2 δLL′ δk k′ . (5.17)

Here δLL′ = δl1 l′1δl2 l′2 . The contributions F (3) and F (4)

stand for the third and fourth order terms in ρ̄. Symme-
try of the order parameter components (see condensation
schemes (2.16ab, 5.1ab)) implies that there exists a non-
zero third order cubic invariant F (3) and hence the tran-
sition Fm3̄m → Pa3̄ is of first order. As a first approx-
imation we investigate the possibility of a second order
phase transition. Neglecting F (3) and F (4), we minimize
F with respect to ρ̄F and to ρ̄c. We obtain two coupled
homogeneous equations from which it follows again that
ρ̄F and ρ̄c have to be of opposite sign. The compatibility
condition leads to the transition temperature

TC =
1
2

(
Jff − Jcc +

√
(Jff + Jcc)2 + 4(Jfc)2

)
,

(5.18)

where

Jff = |λFF | 〈(ρFk (n))2〉0, Jcc = Acc 〈(ρck(n))2〉0,

(5.19a)

Jfc = Afc
√
〈(ρFk (n))2〉0〈(ρck(n))2〉0. (5.19b)

We observe that TC > Jff and the inclusion of conduction
electrons leads to an increase of transition temperature.
The calculation of the first order transition temperature
T1, (T1 > TC), and of the accompanying discontinuities
ρ̄c(T1) and ρ̄F (T1) in the coupled order parameters would
require the evaluation of the higher order terms F (3) and
F (4). Such an endeavor poses not only analytical but
also numerical problems that are beyond the scope of the
present work. We therefore will adopt below (Sect. 6)
an alternative point of view and suggest experiments in
order to check qualitatively the predictions of the theory.

5.2. We next investigate the lattice strains at the transi-
tion to the Pa3̄ phase. We recall the result UffQQT, equa-
tion (2.27), for the coupling of strains to 4f electrons with
quadrupolar order. The same procedure, as outlined in
Section 2, is now applied to derive the coupling of longi-
tudinal strains to conduction electrons. Using the conden-
sation schemes (2.16a, b) and (5.1a, b) and taking into ac-
count the definitions of interaction parameters Λ (Tab. 2),
we obtain from equations (3.22, 3.23)

1
N
UfcQQT = −4a

[
2ΛF dsρ̄F ρ̄ds + ΛF ddρ̄F ρ̄dd

]∑
ν

ενν .

(5.20)

Similarly we get from from equations (3.25, 3.26)

1
N
U ccQQT = −2a

[
4Λdsds

(
ρ̄ds
)2

+ 4Λdsddρ̄dsρ̄dd

+Λdddd
(
ρ̄dd
)2]∑

ν

ενν . (5.21)

The coefficients Λ are quoted in Table 2. We define the
total interaction potential of ordered quadrupolar electron
densities coupled to longitudinal strains by

UQQT = UffQQT + UfcQQT + U ccQQT. (5.22)

Here the right hand side terms are given by equa-
tions (2.27, 5.20, 5.21), respectively. In analogy with ex-
pressions (5.7b, d) we define

Λfc =
1
2

(ΛF ds + ΛF dd), (5.23a)

Λcc =
1
3

(Λds ds + Λdddd + Λds dd), (5.23b)

and use again definition (5.6). Then we approximate
UQQT/N by an effective interaction

1
N
UQQT ≈ −2a[ΛFF (ρ̄F )2 + 2Λfcρ̄F ρ̄c + Λcc(ρ̄c)2]

×
∑
ν

ενν . (5.24)

This relation allows us to express the longitudinal strains
as function of the order parameters. The contributions
UTT and UQQT lead to a supplementary term in the free
energy (compare with Eq. (5.13)):

1
N
FQQT =

1
N
UTT +

1
N
UQQT. (5.25)
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(There are still additional contributions from thermal lat-
tice vibrations, but these are irrelevant here.) For a given
quadrupolar order, i.e. ρ̄F and ρ̄c fixed, we minimize
FQQT[ρ̄F , ρ̄c, ενν ] with respect to the strains εxx, εyy and
εzz and obtain

εxx = εyy = εzz = 8a−2κL

×
[
ΛFF (ρ̄F )2 + 2Λfcρ̄F ρ̄c + Λcc(ρ̄c)2

]
, (5.26)

where a is the cubic lattice constant and where κL is
the bare linear compressibility. From the numerical val-
ues of Table 2 we obtain ΛFF = −498, Λfc = −1 205,
Λcc = −2 966 (units K/Å). Since ρ̄F and ρ̄c are of op-
posite sign, the fc contribution on the right hand side of
expression (5.26) leads to an expansion of the lattice while
the ff and cc contributions lead to a contraction. From
Table 2 we also find that Afc = 30 516 K, Acc = 24 033 K,
and hence from equation (5.10) we deduce that |ρ̄c| > |ρ̄F |.
Hence we conclude that inclusion of the conduction elec-
trons in expression (5.26) leads to an increase of the lattice
contraction by a factor 4.4 in comparison with the effect
of the 4f electrons. A numerical calculation of the lattice
contraction ∆a = aεxx at the first order phase transition
would require the knowledge of the discontinuities ρ̄c(T1)
and ρ̄F (T1). Experimentally [1] one finds in the pressure
(P )–temperature phase diagram of the γ−α transition in
Ce indications of a critical end point where the lattice con-
traction vanishes. Although the transition Fm3̄m → Pa3̄
is always of first order and hence leads to finite disconti-
nuities of ρ̄c(T1) and ρ̄F (T1), there exists the possibility
that the relative importance of the coefficients Λfc and
Λcc, which have opposite sign, changes as a function of
(P, T ) and hence the expression within square brackets on
the right hand side of equation (5.26) could vanish or even
change sign without the requirement that ρ̄c(T1) = 0 and
ρ̄F (T1) = 0. This opens up a possibility of a lattice expan-
sion during the discussed first order phase transition. Re-
cent experiments on YbInCu4 which exhibits an isostruc-
tural phase transition similar to the γ−α change observed
in cerium (see [20] for references) indicate a 0.5% volume
expansion at the transition. Within the present theory
such behavior can be understood if for Yb in YbInCu4

the fc term responsible for expansion prevails over ff
and cc contributions, equation (5.26).

6 Bragg scattering law

In order to provide an unambiguous experimental check
of the theory, we will calculate the Bragg scattering law
for the electronic ordering. The present calculation is in-
spired from the treatment of orientational order in molec-
ular crystals [26,27]. In the following we have in mind
X-rays synchrotron radiation experiments, but the results
should also be relevant for polarized neutron scattering.

We will only quote and discuss here the main results.
Details of the calculation are given in Appendix C. We
start from the Bragg contribution of the differential scat-

tering cross section per unit solid angle Ω:

dσ
dΩQ

∣∣∣∣
B

=

∣∣∣∣∣∑
n

eiQ·X(n)
∑
A

〈FAn (Q)〉
∣∣∣∣∣
2

, (6.1)

where ~Q is the momentum transferred in the scattering
process. Here FAn (Q) is the structure factor for scattering
centers of type A (localized 4f electrons and tight-binding
(5d6s)3 electrons) at lattice site n, 〈...〉 stands for a ther-
mal average.

We first consider the disordered phase (space group
Fm3̄m). At each site of the fcc lattice the electronic density
experiences the same crystal field of cubic symmetry. The
thermal expectation value of the structure factor of 4f
electrons is given by

〈F fn (Q)〉 = 4π
∑
l

il hFl (Q)SA1g
l (ΩQ) 〈ρFl,A1g

〉 (6.2)

with l = 0, 4, ...; ρFl,A1g
is the density operator of the 4f

electron (compare with definition (2.9)). Here we have
Λ ≡ (l, A1g) where A1g is the unit representation of the cu-
bic group Oh. The equivalency of sites in the space group
Fm3̄m implies that 〈ρFl,A1g

〉 and hence 〈F fn (Q)〉 is inde-
pendent of n. The quantity hFl (see Eq. (C.4)) stands for
a radial average of the Bessel function jl(Qr).

Similarly we obtain for the structure factor of the con-
duction electrons density

〈F cn(Q)〉 = 4π
∑
l

il
∑
L

hLl (Q)SA1g
l (ΩQ) 〈ρLl,A1g

〉. (6.3)

Here ρLl,A1g
is given by expression (3.6a) with Λ = (l, A1g),

hLl (Q) is defined by equation (C.8) and 〈F cn(Q)〉 is again
independent of the site index n.

Taking into account expressions (6.2) and (6.3), we
obtain for the scattering law in the disordered (dis.) phase:

dσ
dΩQ

∣∣∣∣dis

B

=
N(2π)3

Vc

∑
G

δ(Q−G)

×
∣∣∣∣∣4π∑

l

il S
A1g
l (ΩQ) 〈ρl,A1g (Q)〉

∣∣∣∣∣
2

, (6.4)

where G is a reciprocal lattice vector of the fcc lattice
and Vc = a3/4 is the volume of the primitive unit cell.
The quantity

〈ρl,A1g (Q)〉 = hFl (Q)〈ρFl,A1g
〉+

∑
L

hLl (Q)〈ρLl,A1g
〉 (6.5)

represents the average electronic density which has site
symmetry Oh. The thermal averages have to be calculated
with U0, equation (4.9). We note that the functions SA1g

l
correspond to the “cubic” harmonics [28] K41, K61, ... for
l = 4, 6, ... In terms of Miller indices (h, k, l) the equiva-
lency of all sites of the fcc lattice ensures that only reflec-
tions with h, k, l all even or all odd occur.
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In the ordered phase of space group Pa3̄, the orien-
tational quadrupolar order of the electronic distribution
breaks the translational symmetry of the fcc lattice. We
have to consider four sublattices with simple cubic (s.c.)
structure. Each sublattice is characterized by a differ-
ent quadrupolar orientation (see Fig. 3). These sublat-
tices which contain one of the sites (0, 0, 0), (a/2)(0, 1, 1),
(a/2)(1, 0, 1) or (a/2)(1, 1, 0) are labeled by an index σ =
1–4 respectively. In real space the condensation schemes
(2.16a, 5.1a) can be translated to a distribution of the
quadrupolar order parameter orientations over the four
sublattices. Recalling that the index k = 1–3 corresponds
to the three T2g components, we write ρ̄Ak (σ) and as-
sign the three component vectors (ρ̄A, ρ̄A, ρ̄A); (−ρ̄A,−ρ̄A,
ρ̄A); (ρ̄A,−ρ̄A,−ρ̄A); (−ρ̄A, ρ̄A,−ρ̄A) to the sublattices
σ = 1−4 respectively. Here ρ̄A stands for the order param-
eter amplitudes ρ̄F or ρ̄L, depending on the condensation
schemes (2.16a) or (5.1a), respectively. The structure fac-
tor for the ordered electronic quadrupoles on sublattice σ
in the Pa3̄ phase is obtained as∑

A

〈FA(Q)〉σ = 4π i2
∑
k

Sk2 (ΩQ) 〈ρk(Q)〉σ, (6.6)

where we have defined the total quadrupolar density on a
site of sublattice σ:

〈ρk(Q)〉σ = hF2 (Q)ρ̄Fk (σ) +
∑
L

hL2 (Q)ρ̄Lk (σ). (6.7)

The functions Sk2 (ΩQ) stand for
√

15
4π Q̂yQ̂z,

√
15
4π Q̂zQ̂x,√

15
4π Q̂xQ̂y for k = 1, 2 and 3 respectively, with Q̂i =

Qi/Q. Combining equations (6.1, C.9, 6.6), we find the
Bragg scattering law for the ordered (o) phase

dσ
dΩQ

∣∣∣∣o
B

=
N1(2π)3

V1

∑
K

δ(Q−K)

×
∣∣∣∣∣4π∑

σ

∑
k

Sk2 (ΩQ) 〈ρk(Q)〉σ eiQ·r(σ)

∣∣∣∣∣
2

,

(6.8)

where K is a reciprocal lattice vector of the s.c. lattice
with lattice constant a, and where N1 = N/4, V1 = a3.
The presence of quadrupolar order in the electronic den-
sity distribution at the transition from the disordered to
the ordered Pa3̄ phase should manifest itself by the ap-
pearance of additional reflections (h, k, l) (in comparison
to those of Fm3̄m) corresponding to a simple cubic lattice
with period a. Here we have limited ourselves to the dis-
cussion of the Bragg term; it is evident that the present
model of quadrupolar order predicts also pronounced in-
tensity in the diffuse scattering law near various X points
in the reciprocal lattice.

7 Discussion and conclusions

The present paper is an extension of our previous model
of the γ–α phase transition in Ce (Ref. [21] or I). We

predict that the γ–α transition is accompanied by a sym-
metry change Fm3̄m → Pa3̄ in the electronic structure.
The idea of such a proposal is borrowed from the theory
of molecular crystals, where Pa3̄ structures due to ori-
entational order of molecular mass distribution are not
unusual. For example, such crystal symmetry occurs in
NaO2 [29], N2 [30] and in solid C60 [31]. The conventional
characterization of the γ–α transition in Ce as a phase
transition “without change of symmetry” is based on sev-
eral X-ray diffraction experiments [1]. It is possible that
domain formation in the α-phase has precluded an iden-
tification of this phase as a Pa3̄ structure. If new exper-
iments are done, particular attention should be given to
the possible coexistence of domains [32].

In comparison with our previous work, reference I, we
have extended the model in two respects. First, we have
included quadrupolar interactions between 4f and con-
duction electrons and secondly, we have calculated the
relevant parameters of interactions (Tab. 2 and Sect. 2)
by using the radial dependences of valence electrons ob-
tained from a DFT-LDA calculation of a cerium atom.
To our knowledge, in the literature there exists no micro-
scopic derivation of multipolar interactions between con-
duction and localized electrons in solids although the con-
cept of quadrupolar moment of a 4f electron shell is well
established [33,34]. Therefore in Section 3 we have pre-
sented a detailed calculation of multipolar interactions
treating band conduction electrons in second quantiza-
tion with wave functions in tight-binding approximation.
Since the intersite quadrupole-quadrupole interaction is
short ranged and anisotropic, special attention has been
given to lattice site symmetry. While we have restricted
ourselves here (see in particular Appendix A) to the case
of an fcc lattice (γ → α Ce), our procedure is general and
can easily be extended to other structures.

Our results can be understood on the basis of the fol-
lowing generalized Hamiltonian which we ascribe to the γ
phase:

Hγ = U0 + UQQ + UQQT + UTT. (7.1)

Here U0 is the crystal field Hamiltonian (4.9). The term
UQQ represents the quadrupole-quadrupole interaction
comprising contributions from 4f and conduction elec-
trons (Eq. (3.29a)). The quadrupolar interaction between
localized electrons is due only to intersite contributions
on the fcc lattice, see equation (2.13) in Fourier space.
The presence of conduction electrons leads to two types
of contributions: inter-site terms, given by (3.17a, 3.19a)
for UfcQQ and U ccQQ, respectively, and on-site terms, given by
(3.17b, 3.19b), correspondingly. Collecting inter-site and
on-site terms separately, we write

UQQ = UQQ|inter + UQQ|intra , (7.2)
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where

UQQ|inter =
∑
q

∑
k,k′

(
1
2
vFk

F
k′(q) ρFk (q)†ρFk′(q)

+vFk
L
k′(q) ρFk (q)†ρLk′(q) +

1
2
vLk

L′

k′ (q) η
(
ρLk (q)†ρL

′

k′ (q)
))

,

(7.3a)

and the summation over L(L′) = (sd), (ds), (dd) is im-
plied. The structure of the interaction matrices vAB(q),
A(B) = F or L, is discussed in Appendix A, the relevant
eigenvalues λAB at qX are quoted in Table 2. The intra-
site contributions are given by

UQQ|intra =
∑
q

∑
k

(
CFL ρFk (q)†ρLk (q)

+
1
2
CLL

′
η
(
ρLk (q)†ρL

′

k (q)
))

, (7.3b)

where the calculated parameters CAB are quoted in Ta-
ble 2. Next in equation (7.1), UQQT, given by (3.29b), is
a correction to UQQ for a deformable lattice, while UTT is
the elastic energy of the cubic crystal in harmonic approx-
imation. In terms of homogeneous strains, UTT is given by
equation (2.28) and UQQT by equation (5.22). In principle
a bilinear coupling term UQT between quadrupolar elec-
tronic and displacive degrees of freedom [35] should be
included in expression (7.1). This term which is known
from Jahn-Teller phase transitions [36] can be essential
if we want to describe transitions from a cubic phase
with quadrupolar disorder to non cubic phases with ferro-
quadrupolar order [37]. However for the transition to the
Pa3̄ phase, which we identify with α-Ce, the atomic cen-
ter of mass positions still occupy a face centered cubic
lattice and the term UQT is irrelevant. Indeed, the driving
force for the transition Fm3̄m → Pa3̄ is the quadrupole-
quadrupole interaction which becomes attractive (in recip-
rocal space) at the X point of the Brillouin zone. This fact
leads to an orientational order of quadrupolar electronic
densities on four different sublattices (Figs. 3, 4). The term
UQQT then prompts a lattice contraction at the first or-
der phase transition. Notice that the term UQT is found
to vanish for a wave vector q at the X point of the BZ.
We insist on these facts since within our view, the elec-
tronic charge degrees of freedom, together with the lattice
displacements, are the driving forces of structural phase
transitions in Ce and related compounds.

The Hamiltonian (7.1) is not sufficient to de-
scribe the magnetic phenomena that occur at the γ–α
transition [12,1]. In accordance with Kramers’ theorem
the quadrupolar ordering, as described by equation (7.1)
is not accompanied by a magnetic ordering. We then con-
clude that the addition of an Anderson Hamiltonian term
Hcf which takes into account the Friedel-Anderson hy-
bridization between conduction electrons and 4f electrons
as well as the repulsive energy among the 4f electrons
on a same site is necessary (for a review see [38]). Such
a Hamiltonian leads to the disappearance of local mag-
netic moments below a characteristic temperature TK.

The Kondo temperature TK increases with increasing hy-
bridization matrix element V . We then conclude that the
lattice contraction accompanying the Pa3̄ quadrupolar or-
dering or the quadrupolar order enhances the hybridiza-
tion V and hence increases TK . This can lead to a sit-
uation where the structural γ → α transition and the
demagnetization of the 4f state occur at a same tem-
perature T1. Notice however that within this scenario the
process is driven by the structural (quadrupolar) transi-
tion at T1 and not by the Kondo volume collapse [8,9].
In case where the enhancement of TK is insufficient, the
quadrupolar order and the concomitant lattice contraction
would occur at T1 without Kondo anomaly (disappearance
of magnetic moment). The condition TK < T1 does not
ensure that the Kondo anomaly actually occurs at lower
T . Quadrupolar ordering has been observed in a number
of Ce, Pr, Tm and U based compounds [33]. A remark-
able example is the magnetic semiconductor TmTe with
4f13 (2F7/2) electronic configuration and Néel tempera-
ture TN = 0.43 K [39]. Although TmTe had been exten-
sively studied before 1995, the phenomenon of quadrupole
ordering below TQ = 1.8 K was completely overlooked
[40,41]. Numerous data on such compounds (CeAg [34],
CeB6 [42], TmTe [40], TmAu2 [43], DyB2C2 [44] etc.)
with quadrupole phase transitions show that the mag-
netic ordering occurs at lower T . A transition to an or-
dered magnetic phase in these rare-earth intermetallic
compounds indicates that the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction between localized magnetic
moments prevails over the the Kondo transition mecha-
nism (for a review, see [45]). In zero magnetic field the
magnetic susceptibility shows no anomaly at TQ for TmTe
[40], CeAg [34] and a very small anomaly for DyB2C2 [44],
TmAu2 [43]. Within the present work we come to the con-
clusion that quadrupolar order, as an electronic charge
degrees of freedom driven process on one hand, and mag-
netic properties (Kondo anomaly, magnetic order) on the
other hand are related indirectly via their coupling to lat-
tice displacements. An open question is a possible relation
between quadrupolar order and hybridization. In our opin-
ion a microscopic derivation of the Anderson hybridization
Hamiltonian which should include details about the sym-
metry of the lattice site and the electronic orbitals consti-
tutes a challenge for further work.

We have given a theory of microscopic quadrupolar
order of Ce where we describe a transition from a struc-
ture with space group Fm3̄m to a space group Pa3̄. As
an extension of the present theory we are currently in-
vestigating the quadrupolar order in TmTe and DyB2C2

where quadrupolar order has recently been observed by
neutron diffraction [41] and by synchrotron radiation [46],
respectively.
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Appendix A

The Fourier transforms of the intersite electronic quadru-
pole-quadrupole interactions are 3× 3 matrices where the
rows and columns are labeled by the indices of the T2g

functions Sk2 , k = 1, 2, 3. The structure of these matrices
depends on the symmetry of the lattice and of the T2g

functions. The magnitude of the elements depends on the
nature of the electrons (localized 4f , or conduction 6s, 5d)
and we abbreviate the electronic indices f or s, d by the
label A, B for F = (ff) or L = (l1l2) writing vAk

B
k′ for

vffk
sd
k′ etc. We consider elements

vAk
B
k′(q) =

∑
h 6=0

′
vAk

B
k′(h) eiq·X(h). (A.1)

Here vAk
B
k′(h) refers to the elements in real space with

h = n′ − n. Taking the site n as origin on a fcc lattice,
the index n′ (or h) labels the twelve neighbors. Compare
with expressions (2.6, 3.4a, 3.11) for the case Λ = (T2g, k),
Λ′ = (T2g, k

′). Performing the lattice sums and using the
symmetries of the elements vAk

B
k′(h) we obtain

vAB(q) = (A.2)

4

γABCyz+αAB(Czx+Cxy) − βABSxy − βABSzx
−βABSxy γABCzx+αAB(Cxy+Cyz) − βABSyz
−βABSzx − βABSyz γABCxy+αAB(Cyz+Czx)


where Cij = cos(qia/2) cos(qja/2), and Sij = sin(qia/2)×
sin(qja/2). Here i, j stands for the Cartesian indices x,
y, z, and a is the cubic lattice constant. Additional in-
formation on coupling matrices can be found in refer-
ence [47] where a problem with similar symmetries was
considered for a molecular crystal. The quantities γAB,
αAB and βAB stand for the matrix elements vAk

B
k′(h) for

h = a(1/2, 1/2, 0) with (k = 3, k′ = 3), (k = 1, k′ = 1)
and (k = 1, k′ = 2), respectively. The interaction ma-
trix vAB(q) has the largest negative twofold degenerate
eigenvalue at the X-point of the Brillouin zone. For in-
stance for qXx = (2π/a)(1, 0, 0) λAB

X+
5

= −4γAB, where

γAB = vA3
B
3 (h) = vA2

B
2 (h) > 0. Hence the quadrupolar in-

teraction parameters λAB
X+

5
are completely specified, their

numerical values are given in Table 2, fourth column.

Appendix B

As a consequence of Bloch’s theorem the conduction elec-
tron states are classified according to the irreducible rep-
resentations of the translational symmetry group of the
crystal. Nevertheless, in the proximity of the nuclei the
corresponding wave functions can be expanded in terms
of spherical harmonics. This fact reflects the importance
of Coulomb singularities associated with the nuclei. In
the following we will focus on the interactions inside the
“muffin-tin” or touching spheres centered on the nuclei
and for the description of itinerant states adopt the tight-
binding approximation. In absence of a static magnetic

field, conduction electronic states with spin projections
sz = ±1/2 are degenerate. Hence we will omit the spin
dependence of the wave function. The wave function of a
conduction electron with wave vector k and band index
α is then written as a linear combination of local atomic
wave functions

〈R|k, α〉 = ψk,α(R)

=
1√
N

∑
n′

eikX(n′)
∑
lm

γlm(k, α)φlm(R−X(n′)), (B.1)

where the position vector R is given by equation (2.2).
The atomic wave functions are given by φlm(r) =
Rl(r)Y ml (Ω). The expansion coefficients γlm(k, α) and
corresponding eigenvalues E(k, α) are obtained by solv-
ing the secular equation (see e.g. [48])∑

λ

(Hλλ′(k)−E(k, α)Sλ λ′(k)) γλ′(k, α) = 0. (B.2)

Here H(k) and S(k) are matrices of single particle Hamil-
tonian and overlap, respectively. Here and in the following
λ = (l,m), δλλ′ = δll′δmm′ . The eigenvalues E(k, α) refer
to the energy band spectrum of the conduction electrons.
Notice that the wave function ψk,α(R) satisfies the Bloch
condition. In the following we shall use an idealized basis
set of orthogonal Wannier functions φλ(r(n)) = 〈R|λ〉n
without overlap,

n〈λ|λ′〉n′ = δλλ′δnn′ . (B.3)

The coefficients γλ satisfy the relation∑
λ

γ∗λ(k, α)γλ(k′, α′) = δkk′δαα′ . (B.4)

The functions ψk,α(R) are then normalized:

〈k, α|k′, α′〉 = δkk′δαα′ . (B.5)

The corresponding electronic Hamiltonian in second quan-
tization (Sect. 3) is

U c0 =
∑
kα

Ekαa
†
kαakα. (B.6)

In case of cerium, we will restrict ourselves to conduc-
tion electrons of d type (l = 2, m = −2, ..., +2, with
principal quantum number n = 5) and of s type (l=0,
m = 0, with n = 6). Figure 1 shows the radial density
of the valence electrons of a Ce atom, it should also be a
guide of the relative spatial extension of the localized 4f
and the conduction electrons in the crystal.

Although the derivation of multipolar interactions in
Section 3 is general in the following we imply the high
temperature γ phase of cerium. There the total electronic
density associated with the conduction electrons has the
symmetry of the space group Fm3̄m [21]. At each lattice
site the band electronic density has on average the unit
symmetry (A1g) of the cubic point group Oh. It is impor-
tant to realize that the on-site quadrupolar charge density
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fluctuations of T2g and Eg symmetry do not interact with
the totally symmetric charge distribution (A1g) represent-
ing the ground state of cerium (see also Eq. (3.5)). On one
hand this allows us to use the Landau concept of Fermi
liquid and to consider the conduction electrons described
by equation (B.1) as quasiparticles where the ground state
on-site interactions have already been taken into account
through the coefficients γlm(k, α). On the other hand we
can focus only on the quadrupolar interactions where con-
duction electrons are involved and consider these interac-
tions separately from the ground state.

Appendix C

Here follow details of the derivation of the scattering
laws, Section 6. We determine FAn (Q) for f electrons by
considering

F fn (Q) =
∑
ij

|i〉n n〈i|eiQ·r(n)|j〉n n〈j|, (C.1)

where r(n) is the radius vector of the 4f electron. We
expand the exponential and transform to site symmetry
adapted functions

eiQ·r(n) = 4π
∑
l,τ

iljl(Qr)Sτl (ΩQ)Sτl (Ω(n)), (C.2)

where jl denotes a Bessel function. Using the basis func-
tions (2.4) we evaluate the matrix element

n〈i|eiQ·r(n)|j〉n = 4π
∑
Λ

il hFΛ(Q)SΛ(ΩQ) cFΛ(ij), (C.3)

where Λ = (l, τ) with τ = (Γ, µ, k) and

hFΛ(Q) =
∫

dr r2R2
f (r) jl(Qr), (C.4)

while cFΛ(ij) is given by expression (2.7). With the defini-
tion (2.9) we get from equation (C.1)

F fn (Q) = 4π
∑
Λ

il hFΛ(Q)SΛ(ΩQ) ρFΛ(n). (C.5)

We next consider the conduction electrons in tight
binding formulation, starting from∫

dRΨ†(R) eiQ·R Ψ(R) =
∑
n

eiQ·X(n) F cn(Q). (C.6)

We determine F cn(Q) by evaluating the left hand side,
starting again from the identity (C.2) and now consid-
ering the matrix elements with the use of tight-binding
basis functions. The result is

F cn(Q) = 4π
∑
Λ

il
∑
L

hLΛ(Q)SΛ(ΩQ) ρLΛ(n), (C.7)

where Λ = (l, τ) and

hLΛ(Q) =
∫

dr r2Rl1(r) jl(Qr)Rl2(r), (C.8)

while ρLΛ(n) is given by expressions (3.6a, b).
In the disordered phase, which we identify with the γ

phase, Γ is the unit representation A1g of Oh. There is
only one representation (µ=1) for each l ≤ 10. Taking the
thermal average of F fn (Q) and F cn(Q) we obtain expres-
sions (6.2, 6.3), respectively.

In the ordered phase we disentangle the sum over the
N sites {n} of the fcc lattice into a sum over the sublattice
{n1} which contains the origin and a sum over σ. We write
X(n) = X(n1)+r(σ), where r(σ = 1) = 0 and where r(σ),
σ = 2− 4, refers to the neighboring sites. We have∑

n

eiQ·X(n) 〈FAn (Q)〉 =

∑
n1

eiQ·X(n1)
4∑

σ=1

eiQ·r(σ) 〈FA(Q)〉σ , (C.9)

where 〈FA(Q)〉σ is independent of n1 since all sites on
a given sublattice are equivalent. By adding the thermal
average of equations (C.5, C.7) in the Pa3̄ phase we get
expression (6.6).
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